1,060 research outputs found

    Blur resolved OCT: full-range interferometric synthetic aperture microscopy through dispersion encoding

    Get PDF
    We present a computational method for full-range interferometric synthetic aperture microscopy (ISAM) under dispersion encoding. With this, one can effectively double the depth range of optical coherence tomography (OCT), whilst dramatically enhancing the spatial resolution away from the focal plane. To this end, we propose a model-based iterative reconstruction (MBIR) method, where ISAM is directly considered in an optimization approach, and we make the discovery that sparsity promoting regularization effectively recovers the full-range signal. Within this work, we adopt an optimal nonuniform discrete fast Fourier transform (NUFFT) implementation of ISAM, which is both fast and numerically stable throughout iterations. We validate our method with several complex samples, scanned with a commercial SD-OCT system with no hardware modification. With this, we both demonstrate full-range ISAM imaging, and significantly outperform combinations of existing methods.Comment: 17 pages, 7 figures. The images have been compressed for arxiv - please follow DOI for full resolutio

    On relative errors of floating-point operations: optimal bounds and applications

    Get PDF
    International audienceRounding error analyses of numerical algorithms are most often carried out via repeated applications of the so-called standard models of floating-point arithmetic. Given a round-to-nearest function fl and barring underflow and overflow, such models bound the relative errors E 1 (t) = |t − fl(t)|/|t| and E 2 (t) = |t − fl(t)|/|fl(t)| by the unit roundoff u. This paper investigates the possibility and the usefulness of refining these bounds, both in the case of an arbitrary real t and in the case where t is the exact result of an arithmetic operation on some floating-point numbers. We show that E 1 (t) and E 2 (t) are optimally bounded by u/(1 + u) and u, respectively, when t is real or, under mild assumptions on the base and the precision, when t = x ± y or t = xy with x, y two floating-point numbers. We prove that while this remains true for division in base β > 2, smaller, attainable bounds can be derived for both division in base β = 2 and square root. This set of optimal bounds is then applied to the rounding error analysis of various numerical algorithms: in all cases, we obtain significantly shorter proofs of the best-known error bounds for such algorithms, and/or improvements on these bounds themselves

    Improved error bounds for inner products in floating-point arithmetic

    Get PDF
    International audienceGiven two floating-point vectors x,yx,y of dimension nn and assuming rounding to nearest, we show that if no underflow or overflow occurs, any evaluation order for inner product returns a floating-point number r^\hat r such that r^xTynuxTy|{\hat r}-x^Ty| \le nu|x|^T|y| with uu the unit roundoff. This result, which holds for any radix and with no restriction on nn, can be seen as a generalization of a similar bound given in~\cite{Rump12} for recursive summation in radix 22, namely r^xTe(n1)uxTe|{\hat r}- x^Te| \le (n-1)u|x|^Te with e=[1,1,,1]Te=[1,1,\ldots,1]^T. As a direct consequence, the error bound for the floating-point approximation C^\hat C of classical matrix multiplication with inner dimension nn simplifies to C^ABnuAB|\hat{C}-AB|\le nu|A||B|

    Grasping trapezoidal objects

    Get PDF
    When grasping rectangular or circular objects with a precision grip the digits close in on the object in opposite directions. In doing so the digits move perpendicular to the local surface orientation as they approach opposite sides of the object. This perpendicular approach is advantageous for accurately placing the digits. Trapezoidal objects have non-parallel surfaces so that moving the digits in opposite directions would make the digits approach the contact surfaces at an angle that is not 90°. In this study we examined whether this happens, or whether subjects tend to approach trapezoidal objects’ surfaces perpendicularly. We used objects of different sizes and with different surface slants. Subjects tended to approach the object’s surfaces orthogonally, suggesting that they aim for an optimal precision of digit placement rather than simply closing their hand as it reaches the object

    Intention and motor representation in purposive action

    Get PDF
    Are there distinct roles for intention and motor representation in explaining the purposiveness of action? Standard accounts of action assign a role to intention but are silent on motor representation. The temptation is to suppose that nothing need be said here because motor representation is either only an enabling condition for purposive action or else merely a variety of intention. This paper provides reasons for resisting that temptation. Some motor representations, like intentions, coordinate actions in virtue of representing outcomes; but, unlike intentions, motor representations cannot feature as premises or conclusions in practical reasoning. This implies that motor representation has a distinctive role in explaining the purposiveness of action. It also gives rise to a problem: were the roles of intention and motor representation entirely independent, this would impair effective action. It is therefore necessary to explain how intentions interlock with motor representations. The solution, we argue, is to recognise that the contents of intentions can be partially determined by the contents of motor representations. Understanding this content-determining relation enables better understanding how intentions relate to actions

    The eye in hand: predicting others' behavior by integrating multiple sources of information

    Get PDF
    The ability to predict the outcome of other beings' actions confers significant adaptive advantages. Experiments have assessed that human action observation can use multiple information sources, but it is currently unknown how they are integrated and how conflicts between them are resolved. To address this issue, we designed an action observation paradigm requiring the integration of multiple, potentially conflicting sources of evidence about the action target: the actor's gaze direction, hand preshape, and arm trajectory, and their availability and relative uncertainty in time. In two experiments, we analyzed participants' action prediction ability by using eye tracking and behavioral measures. The results show that the information provided by the actor's gaze affected participants' explicit predictions. However, results also show that gaze information was disregarded as soon as information on the actor's hand preshape was available, and this latter information source had widespread effects on participants' prediction ability. Furthermore, as the action unfolded in time, participants relied increasingly more on the arm movement source, showing sensitivity to its increasing informativeness. Therefore, the results suggest that the brain forms a robust estimate of the actor's motor intention by integrating multiple sources of information. However, when informative motor cues such as a preshaped hand with a given grip are available and might help in selecting action targets, people tend to capitalize on such motor cues, thus turning out to be more accurate and fast in inferring the object to be manipulated by the other's hand. </jats:p

    An instrumented cylinder measuring pinch force and orientation

    Get PDF
    Background: The function of a cylinder allowing simultaneous measurements of the opposition axis of the index finger and thumb of the hand and the magnitude of pinch force is described.\ud Methods: The apparatus is made of two half-cylinders that are bonded together through a 6-axis force/torque sensor and allows the measurement of 3D orthogonal forces and moments of force. The amplitude of the pinch force exerted on the cylinder by the fingers is defined as the resultant of the forces in the different axes. A software program was developed to measure the barycentre of the forces on the instrumented cylinder, allowing calculation of the angle of the opposition axis between the fingers and the location of the resulting pinch force on the cylinder, assuming that the pinch or grip forces are co-linear through the center of the cylinder.\ud In order to assess the validity and reliability of the measurements, the cylinder was mounted on a milling table and seven calibrated weights (from 100 to 500 g) were successively applied perpendicularly to a 9*9 matrix of sites separated by 1 cm. With the exception of the extreme lateral parts of the cylinder, the dispersion of the calculated vertical position of the resulting force was always within 1 mm of the application point, suggesting a high reliability of these measurements. In addition, the errors in the angles of the applied force were calculated and found to be less than 2 degree with no clear patterns of variation across the different locations of the cylinder.\ud Results: The usefulness of the cylinder is demonstrated by evaluating the pinch force and the opposition axis in six healthy subjects lifting the cylinder from the table using three different orientations of their right hand. The magnitude of the grip force was not significantly different across orientations (45, 22 and -22 degrees relative to the midline of the subject) suggesting that force grip is controlled.\ud Conclusion: From these results, it has been concluded that the cylinder is a valid, reliable and precise instrument that may prove useful for evaluating opposition axis and grip force in healthy and pathological populations

    Uneven integration for perception and action cues in children’s working memory

    Get PDF
    We examined the development of visual cue integration in a desktop working-memory task using boxes with different visual action cues (opening actions) and perceptual surface cues (colours, monochromatic textures, or images of faces). Children had to recall which box held a hidden toy, based on (a) the action cue, (b) the surface cue, or (c) a conjunction of the two. Results from three experiments show a set of asymmetries in children's integration of action and surface cues. The 18–24-month-olds disregarded colour in conjunction judgements with action; 30–36-month-olds used colour but disregarded texture. Images of faces were not disregarded at either age. We suggest that 18–24-month-olds' disregard of colour, seen previously in reorientation tasks (Hermer & Spelke, 1994), may represent a general phenomenon, likened to uneven integration between the dorsal and ventral streams in early development

    Active Vision during Action Execution, Observation and Imagery: Evidence for Shared Motor Representations

    Get PDF
    The concept of shared motor representations between action execution and various covert conditions has been demonstrated through a number of psychophysiological modalities over the past two decades. Rarely, however, have researchers considered the congruence of physical, imaginary and observed movement markers in a single paradigm and never in a design where eye movement metrics are the markers. In this study, participants were required to perform a forward reach and point Fitts’ Task on a digitizing tablet whilst wearing an eye movement system. Gaze metrics were used to compare behaviour congruence between action execution, action observation, and guided and unguided movement imagery conditions. The data showed that participants attended the same task-related visual cues between conditions but the strategy was different. Specifically, the number of fixations was significantly different between action execution and all covert conditions. In addition, fixation duration was congruent between action execution and action observation only, and both conditions displayed an indirect Fitts’ Law effect. We therefore extend the understanding of the common motor representation by demonstrating, for the first time, common spatial eye movement metrics across simulation conditions and some specific temporal congruence for action execution and action observation. Our findings suggest that action observation may be an effective technique in supporting motor processes. The use of video as an adjunct to physical techniques may be beneficial in supporting motor planning in both performance and clinical rehabilitation environments

    Laser-Evoked Vertex Potentials Predict Defensive Motor Actions

    Get PDF
    The vertex potential is the largest response that can be recorded in the electroencephalogram of an awake, healthy human. It is elicited by sudden and intense stimuli, and is composed by a negative-positive deflection. The stimulus properties that determine the vertex potential amplitude have been well characterized. Nonetheless, its functional significance remains elusive. The dominant interpretation is that it reflects neural activities related to the detection of salient stimuli. However, given that threatening stimuli elicit both vertex potentials and defensive movements, we hypothesized that the vertex potential is related to the execution of defensive actions. Here, we directly compared the salience and motoric interpretations by investigating the relationship between the amplitude of laser-evoked potentials (LEPs) and the response time of movements with different defensive values. First, we show that a larger LEP negative wave (N2 wave) predicts faster motor response times. Second, this prediction is significantly stronger when the motor response is defensive in nature. Third, the relation between the N2 wave and motor response time depends not only on the kinematic form of the movement, but also on whether that kinematic form serves as a functional defense of the body. Therefore, the N2 wave of the LEP encodes key defensive reactions to threats
    corecore